Both images at 1000× magnification Scale bar = 10 microns Chemo

Both images at 1000× magnification. Scale bar = 10 microns. Chemostat biofilm culture V. paradoxus EPS was inoculated into a Biosurface Technologies CDC biofilm reactor and grown as a batch culture for 20 h (Fig 10A, B). Continuous culture for 2d after this initial batch phase resulted in the formation of a dense,

filamentous biofilm (Fig 10C–H). Staining with the BacLight system (Invitrogen) showed a mixed population of live and dead cells at all stages of development. At higher magnification, the filamentous structures of the developing biofilm are readily apparent, and filaments that stain with propidium iodide, indicating dead cells, are particularly strongly evident. Figure 10 Biofilms cultivated in a CDC stirred Selinexor price biofilm reactor. V. paradoxus EPS was cultured from a broth inoculum for 18 h under stirred batch conditions (A, B), followed by 24 h (C, D) or 48 h (E, F) under continuous flow conditions (2 ml/min). BacLight staining with PI (red, dead cells) beta-catenin phosphorylation and Syto9 (green, live cells). 100×, scale bar = 100 microns (A, C, E). 400×, scale bar = 25 microns (B, D, F). Discussion The environmental bacterium Variovorax

paradoxus is involved in a number of important processes, such as promoting plant growth and remediation of xenobiotics. Our work with the V. paradoxus strain EPS demonstrates that this strain is capable of coordinated surface behaviors in laboratory culture. The behaviors we’ve examined in this report are the development of a swarm on defined high water activity (low agarose content) media and the formation of biofilms on several abiotic surfaces. We have examined the capaCity of this organism to move across a solid surface, and identified the motility demonstrated as swarming. We utilized agarose as the solidifying agent in our media, at 0.5% w/v, based on previous swarming analyses [39] and auxotrophy studies in our lab showing that V. paradoxus EPS utilizes organic components of bacteriological agar as nutrients (not shown). The motility was shown to require flagellar activity (Fig 2, 3),

aminophylline and to involve the production of a chemically uncharacterized wetting agent (Fig 4). The presence of 1–3 flagella per cell on swimming V. paradoxus has been noted in previous work, and is cited as a defining characteristic of this taxon [41]. We identified these flagella in broth cultures of our strain (not shown). In the recently released draft sequence of V. paradoxus S110, genes encoding flagellar components have been identified (Han et al, http://​genome.​ornl.​gov/​microbial/​vpar_​s110). Based on these data along with our experimental results, we feel justified in labeling the surface motility observed as swarming motility. Our experiments allow some insights into the mechanism of V. paradoxus EPS swarming. Swarming is inhibited by Congo Red with a threshold value of 50 μg/L, consistent with the inhibition of the function of a single flagellum.

acidilactici 3                 0     W confusa 5             4 1

acidilactici 3                 0     W. confusa 5             4 1       Ped. pentosaceus 3               1 2   KAN Lb. plantarum 10                   0   Leuc pseudomesenteroides Everolimus chemical structure 1                   0   Lb. ghanensis 1          

        0   Lb. fermentum 2                   0   Lb. salivarius 6                   0   Ped. acidilactici 3                   0   W. confusa 5                   3   W. confusa 5                   3   Ped. pentosaceus 3                   0 STREP Lb. plantarum 10                 2 5   Leuc. pseudomesenteroides 1                   1   Lb. ghanensis 1                   1   Lb. fermentum 2                   2   Lb. salivarius 6                 4 2   Ped. acidilactici 3                   0   W. confusa 5                 2 3   Ped. pentosaceus 3                   0 TET Lb. plantarum 10           2 8         Leuc. pseudomesenteroides 1           1           Lb. ghanensis 1           1           Lb. fermentum 2         2             Lb. salivarius 6       6               Ped. acidilactici 3             1 2       W. confusa 5       4 1

            Ped. pentosaceus 3             2 1     VAN Lb. plantarum 10           0           Leuc. pseudomesenteroides 1           0           Lb. ghanensis 1           0           Lb. fermentum 2           0           Lb. salivarius 6           0           Ped. acidilactici 3           0           W. confusa 5           0           Ped. pentosaceus 3           0     www.selleckchem.com/products/lgk-974.html     Abbreviations: AMP, Ampicillin; CHL, Chloramphenicol; CLIN, Clindamycin; ERY, Erythromycin; GEN, Gentamicin; KAN, Kanamycin; STREP, Streptomycin; TET,

Tetracycline; VAN, Vancomycin. n; number of strains within each species tested. MIC range tested indicated in gray. Haemolysis testing After streaking the bacteria on tryptone soy agar with sheep blood, no β-haemolysis was observed Rebamipide in any of the bacteria strains. However, as shown in Figure 4, α-haemolysis was observed in 9 out of the 33 strains of which 6 strains were Lb. salivarius, 2 strains W. confusa and the Lb. delbrueckii species strain. Figure 4 Presence of α-haemolytic activity (appearance of greenish zones around the colonies) in Lb. salivarius FK11-4. No haemolytic activities in strain W. cibaria SK9-7. No β-haemolysis (clear zone around colonies of bacteria) was observed in any of the strains. Discussion The reproducibility and discriminatory power of rep-PCR (GTG)5 in typing at species and subspecies level have previously been reported [8, 43–45] and also in the present study the technique proved useful for genotypic fingerprinting and grouping. Lb. plantarum, Lb. paraplantarum and Lb. pentosus share very similar 16S rRNA gene sequences; ≥ 99% and also have similar phenotypic traits making it difficult to differentiate these three species [38]. The recA gene sequence was therefore considered a reliable and useful target in order to differentiate Lb. plantarum, Lb. pentosus and Lb. paraplantarum species [38].

The control animals were instilled with 50 μL of sterile pyrogen-

The control animals were instilled with 50 μL of sterile pyrogen-free water. Correct insertion of the tube into the trachea was assured by using a modified pneumotachometer (National Research Centre for the Working Environment, Copenhagen, Denmark)

[12]. To establish a time-response relationship (experiment 4), 10 mice per dose were exposed click here by i.t instillations to either 3.4 × 106 CFU Vectobac® or 3.5 × 105 CFU Dipel®. BAL fluids were collected 4 hours, 24 hours or 4 days post exposure and cells were counted and differentiated as described below. Subsequently, in order to establish a dose-response relationship (experiment 3), 10 mice per dose was exposed by i.t instillations to a Vectobac® dose of 1.25 × 104, 2 × 105, 4.2 × 105 or 1.2 × 106 CFU, respectively. BAL fluids were collected 24 hours post exposure and cells were counted and differentiated as described below. For the sub-chronic study (experiment 5) the instilled doses were 3.4 × 106 CFU for Vectobac® and 3.5 × 105 for Dipel®. Repeated aerosol inhalations (experiment 6) Mice (n = 9 per group) were inserted into body plethysmographs that were connected to the exposure chamber. The respiratory parameters were obtained

for each mouse from a Fleisch pneumotachograph connected to each plethysmograph that allows continuously monitoring of the parameters [13, 14]. The exposures were preceded by a period that allowed the mice to adapt to the plethysmographs. Then, a 15 min. period was used to establish baseline (control) values of the respiratory parameters. NVP-LDE225 nmr This period was followed by a 60 min. exposure period and a 15 min recovery period. Mice were exposed 60 min/day for 5 days per week for two weeks with a two-day break in-between. The dose of 5 × 104 CFU per mouse per exposure was chosen to mimic occupational exposure [15]. Suspensions of bacteria were delivered from a glass syringe, administered by an infusion pump (New England

Medical Instruments Inc., Medway, MA, USA) and via a polyethylene tube connected to a Pitt. No. 1 aerosol generator [16]. The aerosol was mixed through a Vigreaux-column and led to a glass/stainless steel exposure chamber as described isometheptene [17]. Total flow rate through the chamber was 20 L/min and the air input through the aerosol generator was 14 L/min. The aerosol generator and all related equipments were thoroughly cleaned between exposure sessions. During the aerosol exposures, air samples were collected from the breathing zone of the mice for determination of particle size distribution, real-time particle counts and aerosol CFU concentration. This was done by APS at a flow of 5 L/min, LHPC at 2 L/min and by a filter method GSP at 3.5 L/min. The APS monitored the size distribution of particles in the range from 0.542 to 19.81 μm (aerodynamic diameter) in the exposure chamber. Real time particle counts in the exposure chamber was counted by LHPC in the ranges 0.7-2.

One might therefore expect that trabecular microarchitecture woul

One might therefore expect that trabecular microarchitecture would not be well correlated with fatigue properties in this test protocol. However, it is possible that despite our normalized test,

some types of structure are more favorable over time in a fatigue test than others, which could result in a correlation between a structural parameter and a fatigue property. Additional studies need to be conducted to further delineate the possible relationship between bone microarchitecture and fatigue behavior. Notably, in human trabecular bone, bone volume fraction is weakly correlated with strain at failure, which agrees with our findings [30]. Rather than Bafilomycin A1 applying the same load, which will result in low bone mass samples failing earlier than high bone mass samples, we applied the same apparent strain in each test. By developing this normalized fatigue test, we aimed at determining changes in fatigue properties due to differences at the tissue rather than the structural level. The fact that no difference in fatigue behavior was found between both groups indicates that either no changes occurred in the bone tissue fatigue properties or that we were unable to detect them. Increased mineralization that may have taken place in the ZOL group

due to lower turnover rate apparently did not lead to detectable changes in fatigue properties of the bone tissue. It may be, however, that a longer treatment period would have led to noticeable Smoothened Agonist nmr changes. Also, no untreated OVX group was included in this study, and therefore, (-)-p-Bromotetramisole Oxalate the effects of OVX versus those associated with ZOL treatment cannot be distinguished. Theoretically, it could be that OVX would lead to altered fatigue properties, which could have then been reversed by ZOL resulting in no differences between SHAM-OVX- and ZOL-treated OVX rats. This will need to be tested by additional studies. In our study, several samples did not fail

during the test, which reduced the sample size. Also, between-subject variation was found to be high, which, combined with the small sample size, reduced the power to detect differences between the groups. A power analysis revealed that a scientifically relevant difference of 30% between the two groups in apparent strain at failure would have been detectable if the sample size would have been 22. Therefore, large sample sizes would have been needed to detect any scientifically relevant differences, which were not noted in this study. Also, after starting the test, all samples needed to “settle in”. Thus, strains sometimes decreased or increased slightly directly after starting the test, and this may have affected the time to failure. However, this phenomenon occurred in both groups and, therefore, would not be expected to contribute to group-related differences.

For the substrate immersed vertically into the precursor solution

For the substrate immersed vertically into the precursor solution, branched ZnO nanowires with wurtzite crystal structure grow radially and form a flower shape check details on each of the Si backbones. The morphology of the product prepared by immersing

the substrate facedown into the reaction solution is the same as that of the former case, and both seem to possess an identical growth speed as the length of ZnO nanowires is similar. Nevertheless, for the third case with a faceup direction, the ZnO nanowire arrays disappear on the Si backbones. The Si nanowires tend to bundle up and their surface becomes much rougher in contrast to the Si nanowires with seed layer in Figure 1f. It is well known that water molecules run violently at high temperature, which may cause deformation

of adjacent nanowire tips into clusters for reducing the total energy. Meanwhile, the condensation of the ZnO nanoparticles from the growth solution results in the rough surface of the Si nanowires. The observation indicates that the presence of gravity gradient is a key issue for the growth of ZnO nanowire arrays. Otherwise, only the condensation of the ZnO nanoparticles takes place in a form of film on the seed layer. The intrinsic mechanism possibly lies in the specific BGB324 mw character of chemical reactions in the aqueous solution as well as the thermodynamics and kinetics of ZnO growth, which is under further

exploration. Figure 5 SEM images of products prepared in different substrate directions in solution: (a) vertical, (b) facedown, and (c) faceup. The Si nanowire arrays were capped with ZnO seed layer before hydrothermal growth. It is worthwhile to point out that the seed layer is another important factor in the growth of branched ZnO nanowires. Figure 6 shows the SEM images of the products prepared by 30-min etching and 2-h hydrothermal growth but without the seed layer deposition. The substrates were also soaked in different directions relative to the solution surface during the hydrothermal growth. It is found that after hydrothermal growth, all the Si nanowire arrays exhibit original morphologies except the Cobimetinib supplier bending of the nanowires to form sheaf-like structures in some specimens. The ZnO nanowires or nanorods are also created but disperse randomly on the Si nanowire arrays surface and are removed easily by subsequent cleaning. The sheaf-like structures in Figure 6 are due to the surface tension force presence in the high-temperature solution as well as in the drying process that deforms adjacent nanowire tips into clusters. For the disappearance of ZnO nanowire branches, it is well known that the crystal structure and chemical bonds of ZnO substance are different from those of Si substance.

Kreider RB, Earnest CP, Lundberg J, Rasmussen C, Greenwood M, Cow

Kreider RB, Earnest CP, Lundberg J, Rasmussen C, Greenwood M, Cowan P, Almada AL: Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers

of anabolism, catabolism, and immunity. J Int Soc Sports Nutr 2007, 4:18.PubMedCrossRef 432. Cribb PJ, Hayes A: Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc 2006,38(11):1918–25.PubMedCrossRef 433. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton PF-02341066 datasheet C, Greenwood M, Almada AL, Earnest CP, Kreider RB: The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res 2006,20(3):643–53.PubMed 434. Tipton KD, Borsheim E, Wolf SE,

Sanford HDAC activation AP, Wolfe RR: Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 2003, 284:E76-E89.PubMed 435. Hoffman JR, Cooper J, Wendell M, Im J, Kang J: Effects of beta-hydroxy beta-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res 2004,18(4):747–52.PubMed 436. Thomson JS, Watson PE, Rowlands DS: Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res 2009,23(3):827–35.PubMedCrossRef 437. Wagner DR: Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc 1999,99(2):207–12.PubMedCrossRef 438. Inder WJ, Swanney MP, Donald RA, Prickett TC, Hellemans J: The effect of glycerol and desmopressin on exercise performance and hydration in triathletes. Med Sci Sports Exerc 1998,30(8):1263–9.PubMed 439. Montner P, Stark DM, Riedesel ML, Murata G, Robergs R, Timms M, Chick TW: Pre-exercise glycerol hydration improves cycling endurance time. Int J

Sports Med 1996,17(1):27–33.PubMedCrossRef 440. Boulay MR, Song TM, Serresse O, Theriault G, Simoneau JA, Bouchard C: Changes in plasma electrolytes and muscle substrates during during short-term maximal exercise in humans. Can J Appl Physiol 1995,20(1):89–101.PubMed 441. Tikuisis P, Ducharme MB, Moroz D, Jacobs I: Physiological responses of exercised-fatigued individuals exposed to wet-cold conditions. J Appl Physiol 1999,86(4):1319–28.PubMed 442. Jimenez C, Melin B, Koulmann N, Allevard AM, Launay JC, Savourey G: Plasma volume changes during and after acute variations of body hydration level in humans. Eur J Appl Physiol Occup Physiol 1999,80(1):1–8.PubMedCrossRef 443. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC: Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc 2003,35(1):150–6.PubMedCrossRef 444.

Reduced tumor invasiveness and angiogenesis was observed in Matri

Reduced tumor invasiveness and angiogenesis was observed in Matrigel plugs in mice deficient in IL-1 expression, as compared to control mice. In contrast, mice deficient in IL-1Ra, where there is overexpression of IL-1, show the most intensive angiogenic response. CD34-positive hemopoietic

stem cells were the earliest and most abundant infiltrating population; in control mice, their levels in Matrigel plugs were higher than in mice deficient in IL-1 expression. CD34-positive cells are probably key players in tumor-mediated angiogenesis in this model. Reconstitution of the bone marrow of IL-1 deficient mice by cells from control mice leads to an increased number of CD34-positive cells, as well as increased tumor invasiveness and angiogenesis, comparable to control mice. We found that several populations of CD34-positive cells invaded the Matrigel after injection of melanoma cells RAD001 molecular weight to different KO mice. Both IL-1α Napabucasin mw and IL-1β are probably involved in the induction of CD11b+,

CD34+ and VEGFR1+ cells, designated as hematopoietic precursor cells, whereas IL-1β is mostly involved in CD34+, VEGFR2+, CD31- cells, known as endothelial precursor cells. It was found that both cell types can produce VEGF and thus promote tumor induced angiogenesis. At the same time, only inhibition of IL-1β reduces the angiogenic response induced by injection of B16 melanoma cells in control mice. Thus, inhibition of IL-1β at early stages of tumor development may prove to be effective Dynein for use in anti-tumor therapy. O163 VEGF-A165A and IL-6 in Human Colon Cancer: A Microenvironment Cooperation

Leading to Cell Death Escape through microRNAS Dysregulation Sabina Pucci 1 , Paola Mazzarelli1, Maria J. Zonetti1, Luigi G. Spagnoli1 1 Department of Biopathology, University of Rome Tor Vergata, Rome, Italy Cooperation through the sharing of diffusible factors of tumor microenvinoment and the redirection of some specific guardian pathways raises new questions about tumorigenesis and has implication on designing new therapeutic approaches.Tissue microenvironment strongly influences tumorigenesis and neovascularization, redirecting some pathways versus a persisting pro-survival state. Recent studies suggest a potential role of IL-6-sIL6R in the pathogenesis of colon cancer, although data on the possible relationship between IL-6 production and tumour progression are still conflicting. Increased formation of IL-6-sIL-6R complexes that interact with gp130 on the cell membrane leads to increased expression and nuclear translocation of STAT3, which can cause the induction of anti-apoptotic genes, such Bcl-xL. Moreover, as it has been observed in critical conditions (hypoxia,oxidative stress), STAT 3 activation influences the preferential expression of VEGF-A165a, leading to the inhibition of programmed cell death inducing Bcl-2.

e breast cancer cells While the first three types may all expre

e. breast cancer cells. While the first three types may all express specific binding sites for purified Bt 18 toxin, MCF-7, being a totally different class of cells, may not exhibit selleck similar binding sites for the toxin. Since comparisons had already been made between CEM-SS and two other leukaemic cell lines (CCRF-SB and CCRF-HSB-2), MCF-7 was used in this case to demonstrate that a different class of cell line

may show lower affinity for the purified toxin. When compared to experiments performed previously, the binding results agreed well with the cell viability assays. Purified Bt18 toxin exhibits cytotoxocity towards CEM-SS cells whereas MCF-7 cells are relatively unharmed [17]. The lower cytotoxicity of the toxin for MCF-7 cells may be explained by the lower affinity the toxin has for these cells. The scarcity of literature for the binding mechanisms of parasporin makes comparison of binding affinity of purified Bt 18 toxin on CEM-SS with other Bt parasporal proteins and cancer cell types difficult. However, from binding experiments done on insects, it was found that the dissociation constants of various Bt toxins for insect cells were higher than that of purified Bt 18 toxin for CEM-SS cells. As the dissociation GS-1101 in vitro constant is inversely proportional to the binding affinity, this implies that binding affinity of purified Bt 18 toxin for CEM-SS cells was relatively higher than that of other Bt toxins for insect cells

[18, 19]. This finding is interesting as it may mean that the weak cytotoxicity of purified Bt 18 toxin on leukaemic cells could be influenced by factors other than its binding affinity for Arachidonate 15-lipoxygenase the cell line since the binding affinity was found to be relatively higher in comparison with insect studies. Heterologous competitive binding assays suggested that there was a minor degree of competition between biotinylated Bt 18 toxin and crude Btj toxin as well as crude Bt

22 toxin as the percentage of bound biotinylated toxin was significantly decreased to 78% (p < 0.001) and 80.81% (p < 0.05) at 59.26 nM respectively. This low degree of competition might or might not represent true competition among toxins because it was also observed that at such concentration, there was a significant cell death of 10.66% (p < 0.05) and 2.65% (p < 0.05) for crude Btj toxin and crude Bt 22 toxin respectively (results not shown). The decrease in the percentage of the bound biotinylated toxin might be confounded by cell death that occurred at the same time. Besides, it may also be confounded by the possibility of non-specific binding sites. However, even if true competition were to occur, the degree of competition was small as only approximately 20% displacement of the biotinylated toxin occurred for both crude Btj toxin and crude Bt 22 toxin. Little or no competition between biotinylated purified Bt 18 toxin and crude Btj toxin further supported earlier results by Nadarajah et al.

A — Nuclease S1 protection assays were performed using a 5′ end-

A — Nuclease S1 protection assays were performed using a 5′ end-labeled probe (the same used in Figure 3) and 50 μg of total RNA isolated from cells incubated at the following temperatures for 30 min: 27°C and 38°C (lane 1); 27°C and 42°C (lane 2); 27°C, 38°C, 27°C and 42°C (lane 3); 27°C, 38°C,

27°C, 42°C and 27°C (lane 4). B — Cells incubated at 27°C for 30 min and then with 250 μM CdCl2 for 60 min (lane 1); cells incubated at 27°C for 30 min, at 38°C for 30 min, at 27°C for 30 min, and then with 250 μM CdCl2 for 60 min (lane 2); cells incubated at 27°C for 30 min, with 250 μM CdCl2 for 60 min and then at 27°C for 60 min (lane 3); cells incubated at 27°C for 30 min, at 38°C for 30 min, at 27°C for 30 min, with 250 μM CdCl2 for 60 min and then at 27°C for 60 min (lane 4). Processing of gpx3 intron is inhibited by cadmium treatment To further verify the splicing inhibition by cadmium and its dose-dependent effect, CT99021 research buy we selected another gene to evaluate

intron processing. The gpx3 gene encodes a Glutathione peroxidase and was chosen because its intron is 334-nt length, so unspliced mRNA could be easily ABT-737 in vitro differentiated from spliced mRNA in the Northern blot assays. The experiment was carried out using total RNA from B. emersonii cells submitted to heat shock (38°C), and cadmium (50 and 100 μM CdCl2). The unspliced form of gpx3 mRNA was detected only when cells were treated with cadmium, indicating a partial block in mRNA all splicing (Figure 5). Inhibition of splicing was confirmed to be dose-dependent as a more pronounced inhibition was observed when B. emersonii cells were treated with the highest concentration of cadmium (100 μM). The unspliced form of gpx3 mRNA was not detected when cells were submitted to heat shock at 38°C, indicating that heat stress at this temperature produces no visible effect

in gpx3 mRNA splicing. Interestingly, we observed that the gpx3 gene is induced both in response to cadmium and heat shock, an indication that this gene probably plays an important role in the response of B. emersonii to these two environmental stresses. Figure 5 Analysis of gpx3 mRNA in cells exposed to heat shock and cadmium stress. A-Northern blot assay was performed using total RNA extracted from B. emersonii cells submitted to different cadmium concentrations or to heat shock. RNA extracted from cells 60 min after sporulation induction (lane 1). RNA extracted from cells submitted to heat shock (38°C) from 30 to 60 min (lane 2) after induction of sporulation. RNA extracted from cells 60 min after sporulation induction, incubated with 50 μM or 100 μM CdCl2 from 30 to 60 min (lanes 3 and 4, respectively) after sporulation induction. As a control of RNA levels, the 28S rRNA was shown. B — Relative transcript levels of gpx3 mRNA determined by densitometry scanning of the autoradiogram shown in A. The figure legend (1, 2, 3 and 4) is the same depicted above.

Nano Lett

Nano Lett learn more 2002, 2:101. 10.1021/nl015667dCrossRef 5. Krogstrup P, Henrik Ingerslev J, Martin H, Olivier D, Holm JV, Martin A, Jesper N, Morral AF: Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat Photonics 2013, 7:306. 10.1038/nphoton.2013.32CrossRef 6. Kolasinski KW: Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr Opin Solid State Mater Sci 2006, 10:182. 10.1016/j.cossms.2007.03.002CrossRef 7. Wang H, Zepeda-Ruiz LA, Gilmer GH, Upmanyu

M: Atomistics of vapour–liquid–solid nanowire growth. Nat Comm 2013, 4:1. 8. Yiying W, Yang P: Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 2001, 123:3165. 10.1021/ja0059084CrossRef 9. Dong Lai G, Xiao H, Guo Zhong X, Zhou Z, Gong Ping L, Mi H, Hua Z, Hongyu C, Tom W: Metal-layer-assisted

coalescence of Au nanoparticles and its effect on diameter control in vapor-liquid-solid growth of oxide nanowires. Phys Rev B 2011, 83:045403.CrossRef 10. Hannon JB, Kodambaka S, Ross FM, Tromp RM: The influence of the surface migration of gold on the growth of silicon nanowires. Cyclopamine research buy Nature 2006, 440:69. 10.1038/nature04574CrossRef 11. Chan CK, Xiao Feng Z, Yi C: High capacity Li ion battery anodes using Ge nanowires. Nano Lett 2008, 8:307. 10.1021/nl0727157CrossRef 12. Duan X, Lieber CM: Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 2000, 122:188. 10.1021/ja993713uCrossRef 13. Gudiksen MS, Lauhon LJ,

Wang J, Smith DC, Lieber CM: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415:617. 10.1038/415617aCrossRef 14. Hong-yi X, Ya-nan G, Wen S, Zhi-ming L, Timothy B, Hao-feng L, Qiang G, Hark Hoe T, Chennupati J, Jin Z: IMP dehydrogenase Quantitative study of GaAs nanowires catalyzed by Au film of different thicknesses. Nanoscale Res Lett 2012, 7:589. 10.1186/1556-276X-7-589CrossRef 15. Naji K, Saint-Girons G, Penuelas J, Patriarche G, Largeau L, Dumont H, Rojo-Romeo P, Gendry M: Influence of catalyst droplet diameter on the growth direction of InP nanowires grown on Si(001) substrate. Appl Phys Lett 2013, 102:243113. 10.1063/1.4811782CrossRef 16. Duan X, Lieber CM: General synthesis of compound semiconductor nanowires. Adv Mater 2000, 12:298. 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-YCrossRef 17. Ruffino F, Torrisi V, Marletta G, Grimaldi MG: Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Appl Phys A 2011, 103:939–949. 10.1007/s00339-011-6413-1CrossRef 18. Cheng-Yen C, Jyh-Yang W, Fu-Ji T, Yen-Cheng L, Yean-Woei K, Yang CC: Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. Optic Express 2009, 17:14186–14198. 10.1364/OE.17.014186CrossRef 19. Ressel B, Prince KC, Heun S, Homma Y: Wetting of Si surfaces by Au–Si liquid alloys.