This observation contrasts with reports for other bacterial aspartate receptors, including Tar of E. coli, which is 5–10 fold more abundant than other chemoreceptors in that organism [19]. It would be interesting to determine if Tlp1 is indeed a minor receptor among others or whether there are controlling elements involved in translation and protein stability that may influence the numbers of individual receptors in receptor clusters which are yet to be demonstrated for C. jejuni.
We can note, however, that expression of the tlp1 gene appears to be tightly controlled for successful colonisation of chickens [7]. In Hartley-Tassell et al. (2009), we showed that an isogenic mutant of tlp1 #Selleckchem mTOR inhibitor randurls[1|1|,|CHEM1|]# failed to properly colonise the chick model indicating that expression
of tlp1 is involved in establishing normal colonisation. We also showed that over-expression of tlp1 was detrimental to normal colonisation as the complemented isogenic mutant of tlp1 had comparatively higher expression levels than that seen in wild-type C. jejuni 11168-O and thus was only able to poorly complement the mutant [7]. Similar to the aspartate MM-102 sensory receptor, tlp7 was present in 31 of the 33 strains tested in this study. Tlp7 was previously reported as being a “pseudogene” in C. jejuni 11168 [5] and in all but one of the sequenced strains (NCBI), C. jejuni HB93-13 [6]. However, with the full annotated sequence of C. jejuni 81116 and an updated annotation of C. jejuni 81–176
being released, tlp7 has been reassigned as a functional gene in these strains, which agrees with our sequence analysis. Interestingly, tlp7 shows amino acid identity of >93% among the strains we tested, irrespective whether the gene was an uninterrupted open reading frame or if it was present as two open reading frames separated by a stop codon. In addition, tlp7 was highly expressed, often being the most abundantly expressed of all group A tlp genes in strains 81116 and NCTC 11168 (both -GS and –O) which were tested using different growth conditions, including expression in vivo in murine and avian hosts. It has been shown that the two proteins of Tlp7, Cj0951c and Cj0952c, are expressed Thalidomide separately but can still function as a formic acid receptor [8]. This indicates that the periplasmic and cytoplasmic domains of Tlp7 encoded by Cj0951c/Cj0952c are likely to be able to integrate into sensory receptor clusters and interact in order to transduce the signal to the CheAY/CheW/CheV complex [7, 8]. The second most commonly occurring chemoreceptors were tlp3 and tlp10. Tlp3 was absent in 81–176, 331 and GCH11 but showed highly variable expression depending on the strain of bacteria and the growth/maintenance condition tested. Expression of tlp10 was high in all strains at most of the conditions tested. Although no ligand has been identified for Tlp10 in C.