Physiologia Plantarum 2007, 130:331–343 CrossRef 2 Normand P, La

Physiologia Plantarum 2007, 130:331–343.CrossRef 2. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, et al.: Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 2007,17(1):7–15.Salubrinal nmr PubMedCrossRef 3. Bickhart D, Gogarten J, Lapierre P, Tisa L, Normand P, Benson D: Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. BMC Genomics 2009,10(1):468.PubMedCrossRef 4. Sorek R, Cossart P: Prokaryotic transcriptomics: a new view on regulation, physiology and

pathogenicity. Nat Rev Genet 2010,11(1):9–16.PubMedCrossRef 5. Guell M, van Noort V, Yus E, Chen WH,

Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, et al.: Transcriptome complexity in a genome-reduced 5-Fluoracil mw bacterium. Science 2009,326(5957):1268–1271.PubMedCrossRef 6. Altuvia S: Identification of bacterial small non-coding RNAs: experimental approaches. Current Opinion in Microbiology 2007,10(3):257–261.PubMedCrossRef 7. Bejerano-Sagie M, Xavier KB: The role of small RNAs in quorum sensing. Curr Opin Microbiol 2007, 10:189–198.PubMedCrossRef 8. Livny {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| J, Waldor MK: Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 2007, 10:96–101.PubMedCrossRef 9. Shi Y, Tyson GW, DeLong EF: Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 2009, 459:266–269.PubMedCrossRef 10. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR: Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 2003, 113:577–586.PubMedCrossRef Sinomenine 11. Loh E: A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009, 139:770–779.PubMedCrossRef 12. Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH: Structure and Complexity of a Bacterial Transcriptome. J Bacteriol 2009,191(10):3203–3211.PubMedCrossRef

13. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 2008,18(9):1509–1517.PubMedCrossRef 14. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, Yamaura M, Kakoi K, Kucho K-i: The Frankia alni Symbiotic Transcriptome. Molecular Plant-Microbe Interactions 2010,23(5):593–607.PubMedCrossRef 15. Benson DR, Schultz NA: Physiology and biochemistry of Frankia in culture. In The biology of Frankia and actinorhizal plants. Edited by: Schwintzer CR, Tjepkema JD. Orlando: Academic Press; 1989:107–127. 16. Mastronunzio JE, Huang Y, Benson DR: Diminished Exoproteome of Frankia spp. in Culture and Symbiosis. Appl Environ Microbiol 2009,75(21):6721–6728.PubMedCrossRef 17.

Comments are closed.