In certain regions of Asia melioidosis is a major cause of human morbidity and acute systemic melioidosis has a case fatality rate of up to 50% even if treated [1, 2]. Melioidosis has been described in wild animals, but also in farm and pet animals and can be spread by animal trade and transport [3]. Both species are pathovars of a single genomospecies which was divided historically in two separate species due to their clinical impact and host tropism. HM781-36B B. thailandensis is the third closely related species of the so-called “Pseudomallei complex” which has been out-grouped from the species B. pseudomallei
based on arabinose fermentation and its markedly lower pathogenicity. B. thailandensis and B. pseudomallei are soil bacteria that share the same geographical distribution. B. mallei is a gram-negative, non-motile obligate pathogen and the causative agent of glanders and farcy in equines (horses, donkeys, mules). In horses, glanders primarily presents with purulent nasal discharge, inflammation of the mucous membranes of the upper respiratory tract, and poor general condition, whereas farcy is a chronic cutaneous disease with formation of nodules which may develop into ulcers. Equines are the only known reservoir. Contact with infected animals, ingestion of glanderous meat and exposure
to aerosols can cause B. mallei infections in humans. Human glanders is highly lethal Cisplatin chemical structure and resembles melioidosis. Chronic and latent infections can exacerbate into the acute form even after 15 years in both diseases. Both bacterial species are intrinsically resistant to many antibiotics including ampicillin and broad- and expanded-spectrum cephalosporines due to the production of a beta-lactamase [4]. B. mallei and B. pseudomallei have been classified by the CDC as priority
category B biological agents. Isolation and microbiological identification of B. pseudomallei and B. mallei from clinical samples can take up to one week. Commercial biochemical test systems for B. mallei are not available and B. pseudomallei may be misidentified as Chromobacterium violaceum much or other bacteria [5–7]. Latex agglutination using a monoclonal antibody was shown to be a valuable technique for the rapid identification of B. pseudomallei in positive blood cultures, but no commercial tests are available [8, 9]. Real-time PCR systems have been developed for diagnosing and differentiating as rapid alternatives to biochemical tests, but few have been validated on clinical samples [10–13]. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of bacteria has become a useful tool for the rapid identification of bacteria (see [14] for a recent review). In some studies intact cell mass spectrometry (ICMS) showed better correlation to genetic markers than conventional morphological classification [15].