Further, Prakasha et al reported that both TFPI-2 and R24K KD1, whose mutated first Kunitz-type domain, activated the signaling pathways resulting in apoptosis, and their data suggested that TFPI-2′s serine proteinase inhibitory activity may play a role
in this process [28]. Thus, the findings suggested that TFPI-2 play an important role with apoptosis in cervical carcinoma. It is clear that VEGF dominantly expresses via a paracrine pathway to surrounding microvessels in tumor cells, and VEGF expression is critical for microvessel density in malignancy [29]. In the current study, the expression of TFPI-2 and VEGF was negatively correlated. Therefore, we believe that decreased TFPI-2 expression correlates click here with increased expression of VEGF in cervical carcinoma, suggesting that active TFPI-2 plays a suppressive role on VEGF gene expression. Hitendra et al stably transfected HT-1080 fibrosarcoma cells expressing active human TFPI-2, revealed that TFPI-2 could regulate tumor angiogenesis by reducing synthesis of the VEGF receptor
[30]. There is growing evidence suggesting that TFPI-2 is critically involved in the progression of angiogenesis [12, 31]. We also found that the VEGF expression and MVD in the TFPI-2 positive samples was significantly lower compared to TFPI-2 negative samples. Such result indicated that Human TFPI-2 may inhibit VEGF-stimulated capacity of angiogenesis in the development Selleckchem GM6001 of cervical cancer, which leads to unlimited
the growth of tumors. The Ki67 antigen is a nuclear nonhistone protein to be expressed throughout the cell cycle, except G0. In the present study, we used Ki-67 immunohistochemistry to determine the cell proliferative activity. We observed that there was no significant correlation between PI and TFPI-2 expression in invasive cervical cancer. Our findings contrast with previous studies in vitro, which demonstrated that ectopic expression of TFPI-2 significantly inhibited cell proliferation in hepatocellular carcinoma [11], nasopharyngeal carcinoma before [10] cell lines and Human retinal endothelial cells [32]. These differences may be due to variation in cell type-specific responses, or the detection of an extensive cell cycle phase by Ki-67 immunohistochemistry, and/or our ability to examine complex in lesions. And further study will be essential for discovering more valuable information about TFPI-2 expression and cell proliferation in cervical carcinoma. Conclusions In conclusion, our data shows the expression of TFPI-2 in cervical lesions has a decreasing trend with tumor progression. It is believed that TFPI-2 contributes to tumor cell apoptosis and angiogenesis in patients with cervical cancer. TFPI-2 may be considered as a tumor suppressor gene during the development of cervical cancer. As a result, we propose that TFPI-2 silencing was probably one of the mechanisms of cervical cancer.