Direct detection of Staphylococcus aureus enterotoxin B Polyclon

Direct detection of Staphylococcus aureus enterotoxin B. Polyclonal anti-SEB antibodies were immobilized on the sensing channel, while anti-dinitrophenol antibodies were immobilized on the reference channel. T
In many remote sensing applications that require both high spatial and high spectral resolution, such as urban mapping, vegetation identification and land use classification, high resolution panchromatic images (HRPIs) and low resolution multispectral images (LRMIs) are fused using fusion methods to produce high resolution multispectral images (HRMIs), not only to increase the ability of humans to interpret the image dataset, but also for improving the accuracy of the classification [1].Many image fusion methods have been proposed [1�C3].

Initial methods mainly focused on intensity modulation for sharpening the LRMI by means of an HRPI. These methods provide good visual HRMIs, while overlooking the requirement of the high quality synthesis of spectral content which is very important for most remote sensing applications based on spectral signatures, such as soil and lithology [4]. Another family of methods, such as high pass filtering (HPF) [5] and gradient pyramid [6], yields HRMIs with much less spectral distortion by injecting high frequency information from the HRPI into the LRMI. However, it is not until the introduction of methods based on multiresolution analysis that HRMI achieved artistic results [7]. Conventional image fusion approaches based on �� trous wavelet transform (AWT) [8] implement multiresoltuion decomposition on the HRPI, and then the HRMI can be recovered by performing the inverse AWT (IAWT) from the LRMI and the wavelet planes of the HRPI.

However, wavelet based fusion methods do not consider the differences in high frequency information between the HRPI and the LRMIs [9].The Intensity Hue Saturation (IHS) method can quickly merge massive volumes of data by requiring only resampled LRMIs aside from its high spatial enhancement capability [10]. Its concept is based on the representation of the LRMIs in the IHS system, and then substituting the low resolution intensity component (LRIC) with the HRPI. The inverse IHS transformation allows one to produce the HRMIs. However, the use of such a method for multisensor image fusion often leads to important modifications of the spectral properties of the LRMIs.

This is due to the fact that all Anacetrapib details contained in the HRPI are directly substituted to the LRIC [10].A more appropriate use of the IHS method should rather consist of fusing the LRIC with the HRPI through image processing techniques to produce one high resolution intensity component (HRIC). For this purpose, empirical mode decomposition (EMD) is introduced into the fusion of the LRIC with the HRPI. The EMD is a recent method for analyzing nonlinear and nonstationary data, developed by Huang et al. [11].

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>