perfringens

perfringens see more cells. Ornithine carbamoyltransferase (spot CMM3) (see Additional file 1, Figure 1) was the most abundant of the over-expressed proteins and has also been identified in the surface protein fraction of this bacterium (spot SP15) (see Additional file 1, Figure 3). Similarly, cystathionine beta-lyase (spot CMM4) showing 8.5-fold difference of expression in CMM-grown cells of C. perfringens was also observed as a dominant cell surface

protein (spot SP12) of the bacterium. Curiously, almost all the proteins over-expressed in CMM grown cells were shown to have putative MX69 nmr function in metabolism, of which seven were involved in amino acid transport and metabolism or lipid metabolism. ARS-1620 in vivo Cell surface and envelope proteins A total of 22 surface-localized proteins and 10 cell envelope proteins were identified by proteomic analysis of C. perfringens ATCC13124 (see Additional file 1, 2 and 3). For six of the surface proteins the identification was based on MS/MS analysis of the trypsin digested protein, in addition to

sequencing of one or more peptides; the independent datasets resulted in same protein match in database search [see Additional file 2]. The identified homologs exhibited high amino acid sequence identity (63–74%) with corresponding proteins from C. perfringens ATCC13124 [see Additional file 2] as revealed by blastp results. The 2-DE gel pattern and the identification data of the envelope proteins suggest that rubredoxin and ATP synthase F1, alpha and beta subunit

existed as multiple electropherotypes others (see Additional file 1, Figure 2). Rubredoxin/rubrerythrin (spots MP1, MP2, and MP3) were the most abundant cell envelope associated proteins which is known to exist as multiple homologs in the C. perfringens ATCC13124 genome showing different pI values. Except for the spot MP4, all the identified proteins were assigned to the COG functional category of energy production and conversion. Triosephosphate isomerase, phosphoglycerate kinase, glutamate synthase (NADPH), cell wall-associated serine proteinase, and sucrose-6-phosphate dehydrogenase were the major components in the surface protein fraction of the C. perfringens strain (see Additional file 1, Figure 3). Charge variants of aminopeptidase, cystathionine beta-lyase, and translation elongation factor P were some other surface proteins identified. When searched against COG database, most of the dominant surface proteins were predicted to be involved in amino acid transport and metabolism (31.8%), carbohydrate transport and metabolism (18.2%), and translation, ribosomal structure and biogenesis (18.2%).

Comments are closed.