Only 13 isolates remained as unidentified LAB Figure 1 Mean abun

Only 13 isolates remained as unidentified LAB. Figure 1 Mean abundance of LAB CFUs in the four refineries during the bioethanol process each 30 days. Log10 CFU counts. Figure 2 Restriction profile of the intergenic 16S-23S region of the Lactobacillus vini (A) and Lactobacillus fermentum (B) with the enzymes Sph I (lane 1), Nco I (lane 2), Verubecestat order Nhe I (lane 3), Ssp I (lane 4), Sfu I (lane 5), Eco RV (lane 6), Dra I (lane 7), Vsp I (lane 8), Hin cII (lane 9), Eco RI (lane 10), Hin dIII (lane 11) and Avr II (lane 12). M, 1 Kb molecular marker.

There was a higher number of LAB species in the first 30 days of the fermentation process (Figure 3A). Lactobacillus plantarum was frequently found in the beginning of the fermentation process at Miriri and Japungu distilleries. L. manihotivorans was found in the beginning of the fermentation process at Miriri, whereas Weissella paramesenteroides was found at Trapiche. Overall, there was a predominance of L. fermentum and L. vini after 60 days of fermentation. The two species, L. fermentum and L. vini, corresponded to the majority of the isolates obtained in this study (Figure 3B). There was a tendency of reduction of the LAB species numbers towards the end of the process, suggesting the occurrence of antibiotic resistance and/or the occurrence

of persistent endemic infections. The harsh conditions of the process (antibiotics, high temperature, low pH, and high ethanol concentration) possibly have a selective pressure over the microbiota, leading to a selection of certain resistant LAB types. L. ferintoshensis, L. diolivorans-like, L. nagelii, unidentified LAB, and

{Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Oenococcus kitaharae-like were also found at the end of the fermentation process. Trapiche distillery showed the most distinct LAB composition possibly due to the sole use of molasses. The presumptive identification based on restriction enzyme analysis of rRNA was confirmed for several L. vini and L. fermentum isolates using pheS and 16S rRNA gene sequences (data in attached; selleck products GenBank under the accession nos. HQ009762-HQ009795; additional file 3). For instance, the isolates Oxymatrine JP7.3.7, TR7.5.7, TR7.5.13, TR7.5.15 had > 99% pheS sequence similarity towards the L. vini. Oenococcus kitaharae-like isolates and Lactobacillus sp. isolates were also tentatively identified by gene sequences, confirming their status of unknown species. Rep-PCR analysis using GTG5 primers was performed in order to evaluate the intra-specific diversity in L. fermentum and L. vini. Representative isolates of the species L. fermentum from the four distilleries obtained in the same and in different sampling periods had distinct fingerprint patterns, indicating a high genomic diversity of co-occurring populations (Figure 4). Likewise, representative L. vini isolates had different patterns (Figure 5). The high genomic diversity observed in L. fermentum and L.

Comments are closed.